

Priya

and Belwal

 23

International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 23-28(2017)
 (Published by Research Trend, Website: www.researchtrend.net)
 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

Motivation to a Deadlock Detection in Mobile Agents with

Pseudo-Code

Rashmi Priya
1

and R. Belwal
2

1
TMU, Research Scholar, Moradabad, India

2
AIT, Professor and Head Applied Science, Haldwani, (U.K.), India

ABSTRACT: The solution presented locates locality of reference during the deadlock detection process by

migrating detector agents to query multiple blocked agents. To message each blocked agent individually and

gather their responses at the shadow agent itself is an alternative to this single migration. The pseudo code

provides a context for the solution and insight into the responsibilities and activities performed by each entity.

Keywords: Deadlock, Agents, pseudo code, detector, entity

I. INTRODUCTION

As presented in the previous section traditional
distributed solutions commonly have fault and location
assumptions that make them unsuitable for mobile agent
systems. To solve this problem, mobile agent specific
solutions are required. The properties of the presented
deadlock detection algorithm illustrate how it is a fully
adapted mobile agent solution. The presented technique
is fault tolerant and robust. Lost agents or messages
during the deadlock detection process do not represent a
critical failure. This fault tolerance is due to three
properties of the algorithm: the autonomous nature of
the agents, the periodic
nature of the detection process and the copying of
deadlock information. Shadow deadlock detection and
consumer agents execute asynchronously. They do not
depend on continual communication during the
deadlock detection process. The algorithm is designed
around incremental construction of the global wait-for
graph. Finally, therefore if aportion of the graph is lost,
the next update will recover that information. Hence
copying of the partial wait-for graph into deadlock
detection agents make the loss or failure of a particular
deadlock detection agent trivial and has no impact on
the detection process, outside of slowing the process.
Additional safeguards can be built into the agent hosts.
such as agent crash detection, to improve fault
tolerance.

A. Algorithm Motivation and Agent Properties

By limiting the number of messages that would be
required in other solutions the Detector migration

reduces network load. It is difficult to compare the
network load of this mobile agent solution to that
generated in traditional distnbuted deadlock detection
solutions due to the significantly different paradigm and
properties of the environment. This is due to the parallel
/distributed nature of the technique, which enforces the
lack of a central point of messaging and coordination.
This reduces the risk of flash congestion and allows the
technique to handle deadlock involving many blocked
agents. The load is spread across many host
environments, if the network load of the presented
solution is considered as a whole. Additionally, network
organization independence is guaranteed through a clear
separation of mobile agents from the mechanics of
routing and migration, the agents are not aware of the
number of hosts in the mobile agent system and do not
have explicit knowledge of resource locations. It should
be noted that even though the solution is networking
dependent, the topology is static once the algorithm
begins. If the topology is allowed to change, a dynarnic
topology update protocol must execute in the
background to provide new routes to the hosts.
A common use of mobile agents is to encapsulate
complex protocols and interactions[6]. This technique
uses the combination of shadow agents and deadlock
detection agents to encapsulate a complex series of
probes, interactions and acknowledgments.
Additionally, these protocols are isolated from the
consumer agent; therefore, can be easily modified and
upgraded. The deadlock detection phase could be
implemented as remote procedure calls or another fom
of distributed programming, but would require network
organization assumptions and the continual exchange of

et

Priya

and Belwal

 24

messages. Detector and shadow agents cary out their
deadlock detection tasks in an asynchronous manner.
They coordinate their efforts in defined ways, but are
able to keep working without regular contact and do
not require constant supervision while carrying out
tasks. This asynchronous and autonomous operation
contributes to the previously discussed fault tolerance.
For example, the combination of consumer, shadow
and detector agents adapt to their environment to
solve deadlock situations, shadow agents react
independently to changing network conditions and the
state of their target consumer agent to initiate the
deadlock detection processing. Similarly, the
separation of the implernentation from facilities
specific to a particular mobile agent system or
operating system detector agents can react to network
failures or the requests of other agents while
gathering global wait-for graph information. Allows
the solution to execute in a heterogeneous
environment. Moreover, the separation of replica and
detector agents from the consuming agents they
monitor, allows them to be adapted to many different
environments without (or with minor) modifications
to the entities performing the work.

II. DEADLOCK DETECTION PSEUDOCODE

This pseudo code provides a context for the solution
and insight into the responsibilities and activities
performed by each entity. This section presents
pseudo-code of each element that plays a significant
role in the presented solution. First, pseudo-code for
the consumer, shadow and detection agent is
presented. Finally, code for the mobile agent
environment is presented.

A. Agent A
public class AgentA extends MobileAgent
{
public AgentA(String int heartbeat)
{
state = IDLE;
}
public void run()
{
while(true)
{
messages = getMessagesFromBlackboard(agentId);
processMessages(messages);
switch (state)
{
case IDLE:
case WAITING:
break;
case MOVING:
if(currentHost is not targetEnvironment)
{
postRouteRequest(targetEnvironment) ;
{

else
{
state = IDLE;
{
break;
{
sleep (heartbeatDelay) ;
{
private Vector processMessages(messages)
{
while (more Messages)
if message was accepted remove from list;
return unprocessed messages;
{
private boolean processMessaget BlackboardEntry msg)
if (message equals amove" AND state is IDLE)
{
targetEnvironment = get terget from message;
state = MOVING;
postBlackboardMsg("route”,
targetEnvironment) ;
{
else if(message eqyals "lockw AND
state is IDLE OR WAITING)
{
extract lock type and resource from message ;
lockResource(lockType, resource);
if(message equals
{
ext ract resource f rom message;
unlockResource(resource);
{
AND state
private void lockResource(String locktype,
String resourceName)
{
if(lockType equals “exclusive”)
{
get resource manager;
if resourceManager.lockResource(resourceName,
lockType) succeeds
{
if(resourceName equals blockedResourceName)
state = IDLE;
{
{
else
state = WAITING;
blockedResourceName = resourceName;
postBlackboardMessage(“agentBlock”, resourceName);
private void unlockResource(String resourceName)
{
get Resource Manager
resourceManager.unlockResource(resourceName);
}}

B. Agent B

public class ReplicaAgent extends MobileAgent
(
public ReplicaAgent (String id, String targetAgent, int
heartbeat)
{

Priya

and Belwal

 25

state = IDLE;
targetAgentName = targetAgent;
reset locked resource list
reset detection info table
reset detector agent
{
public void run()
while(true)
{
if (state is not MOVING)
{
messages = getMessagesFrom BlackBoard();
messages =processMessages(messages);
{
switch (state)
{
case IDLE:
break;
get~messagesFromBlackboard();
processMessages(messages);
case MOVING:
if(currentHost is not targetEnviroment))
{
routeRequest(targetEnvironment);
{
else
{
state = IDLE;
}
break;
}
sleep (heartbeatDelay) ;
}
}
private Vector processMessages(messages)
{
while(more Messages)
{
processMessage(currentMessage);
if message processed remove from list;
 {
return unprocessed messages;
{
private boolean processMessage(BlackboardEntry msg)
{
Vector attachments = msg.getAttachments();
if(message equals "move" AND state is IDLE)
{
String target = extract target from message;
targetEnvironment = target;
state = MOVfNG;
{
else if(message equals “addLock”)
{
addlock(attachment #l,
attachent #2,
attachment #3,
attachment #4);
retVal = true;
else if(message equals “removeLock”)
{
removelock (attachment #I, attachment #2) ;

state = IDLE;
retVal = true;
{
else if(message equals ablockedm))
{
blockedTarget(attachment #l);
retVal = true;
{
else if(message equals wblocked))
{
unblockedTarget () ;
retVal = true;
{
else if(message equals “deadlockReport”))
{
processReturnOfDetector(attachment#1, attachment #2,
attachment #3) ;
retVal = true;
{
else if(message equals “deadlockInfoRequest”) 1
retVal = true;
else
{
retVal = super.processMessage(msg);
{
{
public void exit ()
{
if(detector)
{
Remove (detector from host environment);
{
super. exit () ;
private void addlock(String environment,String
resource,String owner,int priority1)
if(resource not already locked)
{
new r e s o u r c e I n f o (env, res, owner, p r i o r i t y1) ;
s t o r e resourceInfo i n locked resource list
}
}
Private void removeLock(S t r i n g env1, S t r i n g
resourceName1)
{
i f (resourceName1 is i n locked resource list)
{
remove resource from locked resource list
{
{
private void unblockedTarget1()
{
state = IDLE;
{
private void blockedTarget(Agent blockedAgent,
String (resourceName)
{
State1 = TARGETBLOCKED;
owner = query host environment for owner of resource;
blockedResourceName = resourceName;
localAgents = query host environment about local agents;
if (owner in localAgents)
Table .put (targetAgentName, new DetectionInfo(..));

Priya

and Belwal

 26

Detector1 = new DetectorAgentO;
postBlackboardMsg(d e t e c t o r);
postBlacKboardMsg(buildDetectorLocks ()) ;
numOfDetectionStarts++;
1astDetectionStartTirne = current time ;
{
{
p r i v a t e void processReturnOfDetector(DetectorAgent
agent)
switch(state)
{
case TARGET-BLOCKED :
if (checkForDeadock(agent.getDetectionTables()
reset detectionInfoTable;
{
case IDLE:
removeDetector () ;
(
switch (state)
(
case TARGET-BLOCKED:
postBlackboardMsg(" s t a r t " , buildDetectorLocks());
numOfDetectionStarts++;)
1astDetectionStartTime = currenttime ;
break;
case WAITING,FORUNLOCK:
break;
{
{
p r i v a t e boolean checkForDeadlock(Vector
detectionTableList)
{
while (detect Table List has more entries)
{
detectionTable = current detection table ;
agent List = get agent list from det. ;
while(agent List has more entries)
{
detection Info = detection info ;
if (current agent name equals targetAgentName)
{
deadlockFound = True;
{
{
{
return deadlockFound;
{
p r i v a t e void resolveDeadlock(DetectorAgent agent)
{
if(state is TARGETBLOCKED)
{
cycleList = findElementsInCycle(detectionInfoTable) ;
while(cycleList has more elements)
{
1ockToBreak = lowest priority resource;
{
i f (lockToBreak equals resource we are blocked on)
{
postBlackboardMsg("unlock",LockToBreak);
state = WAITING-FOR-UNLOCK;
{
{
private Vector findcycle (Hashtable detectionInfoTable)
{

Vector cycleVector = new Vector () ;
cyclevector add(resource we are blocked on) ;
info = find entry in detectionInfoTable
while(current entry agent name not equal to our target
agent)
{
info = find entry in detectionInfoTable ;
cyclevector add(info);
{
return cyclevector;
{
private void checkForDetectorDeath()
{
Date currentTime = current time;
BlackboardEntry msg;
if(num0fDetectionStarts >0)
postBlackboardMsg ("inject”, detector) ;
if(state is TARGET-BLOCKED)
{
postBlackboardMsg(“start", buildDetectorLocks() ;
{
else if(state is WAITING-FOR-UNLOCK)
resolveDeadlock(detector.getIdentifier());
detector.getToken());
{
1astDetectionStartTime = current time;
}}}}

C. Agent C

public class AgentC extends MobileAgent
{
public AgentC (String id, int heartbeat,
ShadowAgent parent)
{
reset detection Table List;
reset resources To Vist;
reset targetEnvironment;
reset targetResource;
state = IDLE;
set parent = parent;
{
public void run ()
{
while (true)
{
if (state is not MOVING)
{
messages = getMessagesfromBlackboard () ;
messages = processMessages(messages);

}
switch (state)
getMessagesfromBlackboard () ;
processMessages(messages);
(
case IDLE:
break;
case MOVING:
if(currentHost is not targetEnvironment))
{
else
{
state = CHECKING-LOCKS;
{

Priya

and Belwal

 27

break;
 if(current Host is not targetEnvironment)
{
if(host.unlockResource(targetResource, agentToNotify)
{
(state = RETURN-FROM-UNLOCK);
{
else
state = IDLE;
{
case RETURNRNFROM, the LOCK:
if(currentHost is not startingEnvironment)
(
Shadow,removeLock(targetEnvironment, targetResource);
state = IDLE;
{
case DONE:
if(currenthost is not startingEnvironment)

(
state = REPORT-RESULTS;
)
case CHECKING-LOCKS:
checklocks () ;
break;
case REPORT-RESULTS:
postMessageToBlackboard(shadowÀgent, deadlockInfo);
break;
}
sleep(heartbeatDelay) ;
private Vector processMessages(messages)
{
while (more Messages)
{
processMessage(currentMessage);
if message processed remove from list;
{
return unprocessed messages;
{
private boolean processMessage(BlackboardEntry rnsg)
{
attachments = msg,getAttachments();
if(message equals “startW ”)
{
startDetection ((Vector) attachment ;
retVal = true;
else if(message equals "unlock") {
startunlock (attachment #1,attachment #2,
attachent #3) ;
retVal = true;
message ;
deadlockRequestResponse (attachment #l) ;
retVal = true;
{
else
{
super.processMessage(msg 1;
{
return retVal;
{
private void startDetection(resources)
(setVisitlist(resources));
targetEnvironment(entry.getEnvlame() };
targetResource (entry. getResName ()) ;

detectionTablelist(new Vector 1);
start ingEnvironment (getHost ().getName ());
state (MOVING) ;
{
private void checklocks ()
{
while(shadowlist has more elements)
count expected responses;
{
if(expected responses > 0)
(
state = WAITING-FOR-RESPONSE;
{
else
{
findNewTarget () ;
}
private void deadlockRequestResponse(newTable)
{
shadowList = query current host for agents blocked on
the resource we are visiting;
expectedResponses--;
detectionTablelist.add(newTable);
if(all expectertesponses received)
{
findNewTarget 0 ;
}
}
private void findNewTarget0
{
if(more resource to visit)
get next resource;
targetEnvironment = entry.getEnvName();
targetResource = entry.getResName();
{
else
{
targetEnvironment = startingEnvironment;
state = DONE;

}}}

D. Host Environment
public class AgentEnvironment extends Thread
public AgentEnvironment(String name, int id, int
(1oggingLevel)
{
resourceManager = new ResourceManagerO;
topologyManager = new TopologyManager();
reset agentTable;
reset messageBoard;
reset blockedAgentTable;
globalIdentifier = id;
state = PROCESSING;
}
public void run ()
(
while(true)
{
checkErrorMessages () ;
updateRoutes () ;
sleep(1000);
}
)

Priya

and Belwal

 28

public synchronized void agentEnter(Agent newAgent)
{
if(state is PROCESSING)
{
agentTable.put(newAgent) ;
newAgent.enter0;
}
}
private synchronized void agentExit(Agent 1eavlngAgent
{
if (state is PROCESSING)
(
1eavingAgent. exit () ;
)}
private void agentBlock(Agent blockedAgent, String
resourceName)
(
replica = find replica agent for blockedAgent;
if (shadow found)
{
postBlackboardMsg("blockedAgent”, resourceName) ;
private void checkForMessages()
{
get messages from blackboard;
while (more messages)
{
processMessage(current message);
}
}
private void processMessage(BlackboardEntry msg
attachments = rnsg.getAttachments0;
if(message equals “pause”))
state(PAUSED) ;

else if(message equals wresumen))
(
state(PROCESSING) ;
message equals
(
agentBlock (msg . getAgent Id () , attachment t1
,attachment t2);
if(message equals 0)
{
routeRequest(msg.getAgentId(), attachment # l ,attachment
#2);
{
else if ((message equals *inject))
this.injectAgent(attachment)

else if(message equals "remove"))
{
removeAgent (attachrnent #l) ;
}
}
private boolean routeRequest(String movingAgent,
EnvironmentToken token,
String targetEnv)
{
if(state() is PROCESSING)
{
movingAgent = get moving agent from agent tables;
(
return true;
)

if(check for shadow information in the token)
shadowAgentId = get shadow name from token;
If (check for shadow agent in agent tables)
{
shadow = get shadow agent from agent tables;
}
else
{
retVal = f alse;
}}
if (retVal is true)
(
AgentEnvironment env = request route from
topologyManager;
if (env is not null)
(

III. CONCLUSION

The presented algorithm is designed with the unique
properties and challenges of mobile agent systems as
a motivating factor. As a result, the solution has some
of the properties and features that are commonly
found in mobile agent implementations. This section
lists the properties of the proposed algorithm which
make it a mobile agent solution. The solution is
network organization independent. The algorithm
makes no assumptions concerning network topology
(i.e., ring). the number of hosts or node locations to
support the solution. Resource-based routing and
tracking of the nodes visited by a particular agent
eliminate the need for explicit topology knowledge.

REFERENCES

[1]. Walsh, T., Paciorek, N. and Wong, D. "Security and
Reliability in Concordia.", Appeared in Mobility:
Processes, Computer and Agents, Addison-Wesley, Reading,
1999.
[2]. Mitsubishi Electric Information Technology Center.
"Concordia - Java Mobile Agent Technology."
World Wide Web, January 2000,
http://www.meitcacom/HSUProjects/Concordia/
[3]. University of Stuttgart. "The Home of the Mole." World
Wide Web, September
2000, httJ)://mole.infonnatik.uni-stuttgart.de/
[4]. University of Tromse and Cornell University.
"TACOMA - Operating System Support For Mobile
Agents." World Wide Web. August 1999.
http://www.tacoma.cs.uit.no/
[5] ObjectSpace Inc. "ObjectSpace Voyager Core
Package Technical Overview.", Appeared in Mobility:
Processes, Computer and Agents, Addison-Wesley, Reading,
1999.
[6] Object Space Inc. "ObjectSpace Product Information:
Voyager." World Wide Web. September 2000. htm://www
.objectspace.com/products/voyager/
[7] Fachbereich lnfonnatik and Johann-Wolfgang-Goethe-
Universitaet Frankfurt. "ffMain". World Wide Web.
February 2000. htn>://www.tm. informatik.uni•
frankfurt.de/Projekte/MN
[8] University of Geneva. "The Messenger Proejct." World
Wide Web. December 1997. http://cui.unige.ch/tios/msgr/
[9] General Magic, Inc. "Odyssey". World Wide Web.
November 2000. http://www.genmagic.com/
[10] University of Modena. "MARS (Mobile Agent Reactive
Space)." World Wide Web.

